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A Pulsed Polarimeter
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“Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor
conditions” R J Smith,  Rev Sci Instrum. 2008 Oct;79(10):10E703

Polarimeter
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Combines
 Lidar Thomson scattering with
         polarimetry to provide

local ne and B|| along sightline

Can also provide Te along sightline, though
collective TS (low Te, high ne) is a problem
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2° ⇔ (ne=1025 m-3) x (B=20  T)x (λ=0.532)2 x (Δs= 1 mm)

Δαpp/Δs ∝  neB||

2° ⇔ (ne=1027 m-3) x (B=200 T)x (λ=0.050)2 x (Δs=100µm)

TS:  can reduce pulse energy by 10, so better!

÷100x10 ÷10
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How it works: Seems to be universal, tokamaks to MHED
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Pulsed polarimetry on MagLIF

I) High spatial and temporal resolution of B||(t,s) field
 Spatial resolutions of Δs < 500 μm (1 ps)

 Temporal resolutions of Δt ~70 ps/cm of plasma
 Field resolutions of a ΔB||/B|| ~ a few percent

Resilient to refraction and non-perturbing
Aim-and-shoot, single diagnostic access port
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A measurement scenario, addresses Key issues
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With possible
measurement goals:

neTe or electron pressure

Peak ne and peak Te

Edge distributions of ne, Te

Internal magnetic field
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~1 cm



7

The parameters (wire Z pinch, pre-cursor phase for example):
    Plasma:   ne =1.4x1025 m-3; Te = 100 eV;  Zeff  = 7;   B = 80 T;  Lp = 2 cm

  Instrument:  Elaser =1 J; Δs= 0.5 mm;  λlaser= 532 nm; A=π(1000λ)2 ; ΔΩ = 0.005 sr; η = 5%

I.  Δα (for 500 µm )= 4 degrees! (healthy)      ∝ (B, ne, Δs, λlaser
2 )

II. Inv. Brems abs. length (αIB) =  5 cm (large)     ∝ (Te, 1/ne
2, Δs, 1/λlaser

2 , 1/Zeff)
III.  Cutoff  λ =  9 µm (high)    ∝  (1/√ne)
IV.  NTS =  7x108 ph per Δs (huge) ∝ (ne, ΔΩ, Elaser, Δs, λlaser )
V.  δB ~0.4 mT or δB/B <1% (obviously too good)   ∝  (1/SNR(shot limited), η)
VI. Nbrems =  8x106 ph per Δs ∝ (ne

2
, AΔΩ, Lp, Δs, Zeff, Δs/c )

but Nbrems noise    ∝ (√Nbrems) ~ 3x103ph (exceedingly small)

Very positive but how to carry it out?

MagLIF Workshop, Albuquerque, NM,  February 5-8,  2012



8

Instrumental considerations
Detection:   1 ps bandwidth is needed:   streak cameras (170k$)

cannot provide useful dynamic range and they have low QE

    (use OKE method, high dynamic range, cheaper, high QE)
 Material costs?  CCD camera(30k$),

     scattering cell(2k$)
     optical Kerr cell(4k$),
     collection optics, polarimeter and port(10k$).

Laser:  Sub-ps pulsed lasers are needed with ~ 1 J output energy
λ can be 1060, 530, 353, 265, or 800, 400, 200 nm etc.

(Available )
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Imaging of a laser pulse

‘Ultrahigh Speed Photography of Picosecond Light Pulses and
Echoes’

M.A Duguay and A.T. Mattick, App. Optics, V10, 9, 1971

Still image of the intensity of a pulse of light
frozen in flight (cm scale)

A 2 cm plasma produces a 2 cm image for direct imaging
and 4 cm image for Pulsed Polarimetry.  Best and only method
for plasmas of this size, I believe.
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Pulsed Polarimetry using ultra-fast photography

Lp

2L
polarized backscatter

scattering
medium

ps

Kerr shutter (snap shot mode)
fast relaxation time ~1 ps

camera

particulate suspension,
α = <10% per cm

½ plate

Synchronized gate pulse at 1064

Pulsed Polarimetry diagnostic using OKE shutter showing the two s, p intensity profiles

laser

Z pinch
plasma

“Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an
optical Kerr effect shutter technique” R J Smith  Rev Sci Instrum. 2010 Oct 81(10):10D530.
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ne and B|| vs (s)
ne and B|| vs (s and y)

ne, B|| and Te vs (s)

Scattering cell can do everything a Streak
camera can do
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It may be possible to achieve a Kerr cell technique  with 100 femtosec
response and a 100 femtosec laser pulse gives Δs ~30 µm



Doesn’t end there

Use a surrogate medium for a plasma:
 (fiber pulsed polarimetry),

Ingredients:  1) Faraday effect in a medium
   2) Rayleigh backscatter

Provides complementary information:
Boundary conditions
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Fiber optic Pulsed Polarimeter Option

A. Plasma pulsed polarimetry as above – requires a
‘good’ magnetized plasma to work.

B. Fiber optic pulsed polarimetry – always works!
provides local field sensing as boundary conditions:

        1) current distributions in conductors from external fields
2) coupling efficiency of pulsed power drivers to plasma
3) Boundary fields adjacent to and in plasmas
4) Time resolved field profiles  (Dynamics!!).
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Fiber pulsed polarimetry

• measures local field along the fiber and seems
to be a single shot but

  - several fibers with delays multiplexed into a
streak camera provide dynamics -
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Pulses with delays  
Ultra-short pulsed laser, 1 ps  ~10 µJ  

Input lens  

4 fibers, 2 with 10 ns input fiber delays  

Wollaston  prism 
polarizing splitter  

Output fiber delays  synchronize all pulses  

Streak camera input slit  

Streak camera   

s polarization  

p polarization  

Fiber optic directional  couplers  

Z pinch  column  

B|| (!d_/ds) Vs arc length for the 2 
blue fibers  

s 

B||  

_ Vs arc length  

s 

º 27T 

Many optical fibers with delays easily gives :
- Plasma Dynamics -
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Detector for fiber option
• Why would a streak camera work for fibers

and not for plasma?

•    light slows in fiber by 2/3rds
•    light is easier to manipulate to a narrow slit (good

time resolution 10 ps)
•    pulse can be very narrow-100 fs (little dispersion)
     Δs can be around ~ 1 mm, (the Lidar minimum)

Silica fibers are sufficient at 20T
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How to develop these techniques?
no lack of interest

Univ.  of  Washington  ( pulsed polarimeter for MTF, ~cm
resolution under development)

NTF Reno  ( Zebra and more important the laser, Radu P.)
NTF Reno  ( polarimetry using 266 nm, Vladimir I.)
Cornell   ( Cobra, interest in Faraday techniques,  John G.)
LANL/AFRL  (MTF spans the full range of HED, interest

     in Faraday techniques, Tom I.)

 These techniques have promise across all of MHED science
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Conclusions
• Pulsed polarimetry is appropriate for a good starting range of

MagLIF plasmas and can mature to high ne and B.

• There are no other ‘local’ field sensing diagnostics outside of
pulsed polarimetry for HED science.

• Pulsed polarimetry provides distributions of internal ne, B|| and
Te in one ‘snap shot’ and is single port aim-and-shoot.

• Fiber pulsed polarimetry can provide several distributions of
local B|| external to plasma and plasma dynamics.
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